Volume 7, Issue 2, December 2019, Page: 19-24
New Magnetics Observations with a Random Exchange Interaction
Alioune Aidara Diouf, Physics Department, Faculty of Sciences and Techniques, University Cheikh Anta Diop of Dakar, Dakar-Fann Dakar, Senegal
Souleymane Sene, Physics Department, Faculty of Sciences and Techniques, University Cheikh Anta Diop of Dakar, Dakar-Fann Dakar, Senegal
Bassirou Lo, Physics Department, Faculty of Sciences and Techniques, University Cheikh Anta Diop of Dakar, Dakar-Fann Dakar, Senegal
Received: Nov. 19, 2019;       Accepted: Dec. 5, 2019;       Published: Dec. 11, 2019
DOI: 10.11648/j.ajea.20190702.12      View  554      Downloads  109
The aim of this paper is to investigate a new type of magnetic material, which has a permanent random exchange interaction. The ferromagnetic properties (magnetizations) of an Ising nanostructure are investigated using the effective field theory with correlations. The system has consisted from spin-1/2 atoms with a random exchange interaction Jij. The value of Jij is randomly distributed by a random function. A specific investigation about the special effects of the random core exchange interaction on the magnetization and the critical temperature has been studied. For the appropriate value of the system parameter new descriptions and phenomena of the magnetizations in 3D have been obtained. The results show that it is possible to get the same ferromagnetic behavior observed with a constant exchange interaction by using a permanent random exchange interaction. Moreover, the results found can be as well displayed in three dimensions (3D) with the same behavior observed in 2D. The results are well detailed in the paper.
Random Exchange Interaction, Effective Field Theory, Magnetization in 3D
To cite this article
Alioune Aidara Diouf, Souleymane Sene, Bassirou Lo, New Magnetics Observations with a Random Exchange Interaction, American Journal of Electromagnetics and Applications. Vol. 7, No. 2, 2019, pp. 19-24. doi: 10.11648/j.ajea.20190702.12
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
E. Tirosh and G. Markovich, Adv. Mater. 19 (2007) 2608.
R. Q. Song, A. W. Xu, and S. H. Yu, J. Am. Chem. Soc. 129 (2007) 4152.
H. Gao, M. Staruch, M. Jain, P. X. Gao, P. Shimpi, Y. Guo, W. Cai, H. J. Lin, Appl. Phys. Lett. 98 (2011) 123105.
[4] Alioune Aidara Diouf, Bassirou Lo, Alhadj Hisseine Issaka Ali, Aboubaker Chedikh Beye. Comparative Investigation and Generalized of the Core/Shell Effects on the Magnetics Properties in the Ferromagnetic Cubic Nanoparticles by the Transverse Ising Model. American Journal of Nanomaterials. Vol. 4, No. 1, 2016, pp. 1-7. http://pubs.sciepub.com/ajn/4/1/1.
M. J. Benitez, O. Petracic, E. L. Salabas, F. Radu, H. Tüysüz, Schüth, and H. Zabel, Phys. Rev. Lett. 101 (2008) 097206. X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, CARBON 48 (2010) 365.
H. Zeng, J. Li, J. P. Liu, Z. L. Wang, S. Sun, Nature 420 (2002) 395.
A. Lopez-Ortega, M. Estrader, G. Salazar-Alvarez, A. G. Roca and J. Nogues, Physics Reports (2014), http://dx.doi.org/10.1016/j.physrep.2014.09.007.
R. H. Kodama, J. Magn. Magn. Mater. 200 (1999) 359.
G. V. Kurlyandskaya, M. L. Sanchez, B. Hernando, V. M. Prida, P. Gorria, M. Tejedor, Appl. Phys. Lett. 82 (2003) 3053.
S. D. Bader, Reviews of Modern Physics 78 (2006) 1.
J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song.
K. Moon, T. Hyeon, Angew. Chem. 47 (2008) 8438.
A. H. Habib, C. L. Ondeck, P. Chaudhary, M. R. Bockstaller, and M. E. McHenry, J. Appl. Phys. 103 (2008) 07A307.
M. I. Shukoor, F. Natalio, M. N. Tahir, V. Ksenofontov, H. A. Therese, P. Theato, H. C. Schröder, W. E. G. Müller, W. Tremel, Chem. Commun. 44 (2007) 4677.
M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, R. Ahuja, Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Isingnanocube, Superlattices and Microstructures (2015), doi: http://dx.doi.org/10.1016/j.spmi.2015.01.003.
J. Liu, Q. Li, T. Wang, D. Yu, and Y. Li, Angew. Chem. 116 (2004) 5158.
S. Singhal, J. Singh, S. K. Barthwal, K. Chandra, J. Sol. Stat. Chem. 178 (2005) 3183.
X. He, G. Song, J. Zhu, Mater. Lett. 59 (2005) 1941.
K. Maaz, W. Khalid, A. Mumtaz, S. K. Hasanain, J. Liu, J. L. Duan, Physica E 41 (2009) 593.
Kantar, E.: Eur. Phys. J. B. 90, 152 (2017).
Kaneyoshi, T.: Phase Tran. 86, 404 (2013).
Zaim, A., Kerouad, M., Boughrara, M.: Solid St. Commun. 158, 76 (2013).
Dakir, O., El Kenz, A., Benyoussef, A.: Physica A 426, 45 (2015).
Yalcin, O., Erdem, R., Ozum, S., Demir, Z.: J. Magn. Magn. Mater. 389, 120 (2015).
Lu, Z. X.: Phase Tran. 89, 273 (2016).
El Hamri, M., Bouhou, S., Essoudi, I., Ainame, A., Ahuja, R., Dujardin, F.: J. Phys.: Conf. Ser. 758, 012023 (2016).
Vatansever, E., Yuksel, Y.: J. Magn. Magn. Mater. 441, 548 (2017).
Kaneyoshi, T.: Phys. Stat. Sol. b 242, 2938 (2005).
Wang, W., Chen, D. D., Lv, D., Liu, J. P., Peng, Z.: J. Phys. Chem. Solids 108, 39 (2017).
Kaneyoshi, T. J Supercond Nov Magn (2018), https://doi.org/10.1007/s10948-018-4709-5.
M. F. Thorpe, D. Beeman, Physical Review B, 14, 1 (1976).
M. F. Thorpe. J. Phys. 36, 1177 (1975).
M. Drillon, E. Coronado, D. Beltran, R Georges, J. Appl. Phys. 57, 3353 (1985); doi: 10.1063/1.335094.
Jozef Strecka, Michal Jascur, A brief account of the Ising andIsing-like models: Mean-field, effective-field and exact results, Acta Physics Slovaca 65 (2015) 235-367.
I. Essaoudi, K. Bärner, A. Ainane, M. Saber, Physica A 385 (2007) 208–22.
Browse journals by subject